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Fig. 1. Digital inpainting with our algorithm: corrupted image (left), restored image (right).

Abstract— Digital inpainting consists in reconstructing dam-
aged parts of an image in order to restore its original aspect. In
this paper, we propose the use of Smoothed Particle Hydrody-
namics (SPH) method into the digital inpainting context. The for-
mulation of the SPH method and its flexibility towards treatment
on inpainting domains with complex geometry determine a simple
algorithm. Moreover, we compute the particle approximation of
the SPH method using the gather approach which ensures compu-
tational efficiency. We illustrate the effectiveness of our inpainting
algorithm in a set of restored images where not only damaged
images were recovered, but also parts of images obstructed by
objects. The results achieved in affordable computational time are
close to the ones obtained with traditional inpainting algorithms.
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I. INTRODUCTION

Inpainting consists in restoring degraded parts of an image
in order to restore its natural visual aspect. Digital inpainting
seeks to translate artistic restoration concepts to a mathe-
matical language, reproducing its results in damaged digital
images. Once the user determines which image regions must
be fixed, the inpainting algorithm uses the information from
the surrounding area to fill the selected regions and returns an
image, in which is expected for an observer who is not familiar
with the original one not to be able to detect alterations [1].
The main digital inpainting algorithms, which can include the
seminal work of Bertalmio et al [1] and some extensions [2],
[3] can be described from the temporal evolution of the image
based on a Partial Differential Equation. Numerical solutions
are used in the traditional finite difference method due to
direct formulation from the discrete model of an image. An
alternative technique, producing good results, was proposed
in [4], which repeatedly applies the convolution of the image
with a Gaussian filter.

There are many topics of interest related to the digital

inpainting. Among them, we would like to mention the image
denoising. In this field, a interesting approach is presented
in [5]. The Smoothed Particle Image Reconstruction (SPIR)
algorithm makes use of the versatility granted by the SPH
method to rebuild the image. SPH determines the value of
a property over a particle by interpolating the known values
on particles in its surroundings with no connectivity needed
among the particles in the discretization.

Contributions: This paper presents an algorithm based
on SPH method for digital inpainting, named as Gather
- Smoothed Particle Image Reconstruction (G-SPIR). The
proposed approach uses a radial interpolation provided by
SPH method to fill damaged pixels in the target image. In
contrast with previous denoising SPH method which uses
scatter approach, our approach combines the definition of
the area element geometrically with the gather approach in
a simple and efficient algorithm able to reconstruct lost or
deteriorated large parts of images.

A. Related work
Digital inpainting was initially proposed by Bertalmio et

al [1], and their pioneer work is considered a reference
for many other studies in the area. Being Ω the region to
be inpainted and ∂Ω its boundary, most digital inpainting
algorithms roughly consists in progressively prolong to Ω
the isophotes from ∂Ω in a way that the continuity of the
gray-level is preserved. Simultaneously, the regions defined
by the prolongation of these isophotes are filled with color
corresponding the information of the surrounding area. Thus,
Ω is iteratively shrunk transporting the information of its
frontier smoothly to its interior (Fig. 2).

Oliveira et al [4] have proposed a simple algorithm that
reproduces results close to the ones obtained in [1] with a
considerable reduction in execution time. The simpler version
of this algorithm tends to introduce an undesirable blur where
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(a) Damaged image (b) Intermediate step (c) Final result

Fig. 2. Progressive nature of a digital inpainting algorithm.

it crosses high contrast borders. This drawback can be cor-
rected by applying diffusion barriers that limit the diffusion
process in the Ω interior.

Di Blasi et al [5] have introduced a new approach for the
reconstruction of noised images using the SPH method. Their
algorithm, called SPIR (Smoothed Particle Image Reconstruc-
tion), uses the scatter approach in the discretization of SPH’s
integral representation. While it is effective in removing noise,
the adopted approach is not appropriate for the problem of the
digital inpainting.

II. TECHNICAL BACKGROUND

A. Smoothed Particle Hydrodynamics

The SPH method determines an approximation for a func-
tion and its derivatives using a local average. More precisely
starting from a particle set, points that represent the simulation
object and have properties inherent to the problem, each
function and their derivatives in a determined point are approx-
imated by weighted average of contributions given by particles
near this point. The basic formulation of SPH can be divided
into two steps: integral representation and approximation by
particles. These steps will be briefly described in the following.

The integral representation of a function f with a domain
Ω ⊂ R2 is defined by the convolution of f with a smooth
function Wh : R2 → R called kernel. We use as kernel a
radial basis function Wh = W (R), where R = ‖x‖/h with
W (r) = 0 when r > κ. The parameter κ ∈ R is associated
with kernel W . Hence, the integral representation is given by

fh(u) =

∫
Ω

f(x)Wh(u− x)dΩ. (1)

In SPH method, the kernel Wh is generally choosen as
a differentiable function, with support domain and unitary
integral.

The particle approximation of SPH method consists in
replace the integral representation by summing the contribu-
tions of a point collection (or particles) arbitrarily distributed
on problem domain. The compactness condition ensures that
only a finite number of particles have to be considered in
approximation. The effective domain of kernel Wh in a particle
u ∈ Ω is given by V (u) = {x ∈ R2; ‖x − u‖ ≤ κh} and is
called support domain of u. Hence, the f(u) approximation
is made by computing the average of f(x) values, obtained
by the contribution of the neighboring particles x from the
particle u:

fh(u) =
∑

x∈V (u)

f(x)Wh(u− x)Vx, (2)

where the infinitesimal discrete area dΩ is replaced by the area
element Vx. The success in the approximation depends directly
on the smoothing length h or, more precisely, on the number of
nearest neighboring particles (NNP). A small value of h may
result in an insufficient number of neighboring particles in
the support domain. On the other hand, to achieve a particular
number of particles it is necessary a large value of h, there will
be local smoothing properties. Hence, determining the NNP
must occur before computing the SPH method. We will see
that there are two interpretations to the search of neighboring
particles: the gather approach and the scatter approach. Both
differ in the way of inferring whether a given particle is
a neighboring particle. Choosing the most suitable approach
depends on the kind of problem to be solved.

B. Determining the nearest neighboring particles

In the scatter approach, the smoothing length hj refers to the
support domain radius of the particle xj , and it is considered
one of the NNP if the particle u belongs to its support domain
(Fig. 3 (a)). By fixing a k number of NNP, the values of hj
must be increased until u belongs to k support domains.

This approach is is numerically efficient in noise treatment
of images, once the pixels to be restored are surrounded
by color data pixels, as proposed by Di Blasi et al. [5] in
their Smoothed Particle Image Reconstruction (SPIR) method.
However, it becomes ineffective in the restoration of a great
number of gathered pixels, frequent event in the image restora-
tion field, which is the purpose of digital inpainting.

In the gather approach, the smoothing length h refers to the
support domain radius of particle u and its NNP correspond
to the xj particles contained in its support (Fig. 3 (b)). This,
by fixing a positive integer k, the value h must be increased
gradually until it reaches a k number of NNPs contained in
support domain of u (k nearest neighbors).

(a) Scatter approach (b) Gather approach

Fig. 3. Note that the third nearest particle (green) was not classified as NNP
(blue) in scatter approach (a). In gather approach (b) the NNP (blue) are the
k nearest particles.

III. OUR APPROACH

Our proposed method consists in applying the SPH method
in the digital inpainting context, using a gather approach in the
particle approximation step. This choice led to results close to
the ones obtained with the known textbook methods.

In this work, we define the same area element in all
particles, which represents the geometric property of the



infinitesimal element. This definition avoids the use of an
unbalanced smoothing kernel function even when a large
image region is restored, allowing the use of our method in
traditional image inpainting cases.

Given a degraded image, the user supplies a mask that
specifies the regions (Ω) to be restored and a number k ∈ N of
NNP for each damaged pixel in Ω. For each damaged pixel,
the algorithm searches for the k nearest neighbors using the
gather approach (through the kNN algorithm), and the SPH
assigns color to the pixel based on the nearest neighbors color
interpolation. The whole process is schematized in Fig. 4.

Fig. 4. The inpainting steps. From top-left to bottom-right: damaged image;
search for neighbors (blue); assigning a color to the retouched pixel (red).

A. Implementation

In the algorithm presented in this paper, the image to be
restored

I : [1, a]× [1, b] ⊂ N2 → [0, 255] ⊂ N, (3)

will be discretized in a set of particles {p1, p2, · · · , pn} with
n = a·b where each particle pk represents the pixel coordinate
(ik, jk) ∈ [1, a]× [1, b] and the color Ik = I(ik, jk) stored in
this pixel.

Besides, the inpainting domain Ω is set from an image

M : [1, a]× [1, b] ⊂ N2 → [0, 255] ⊂ N, (4)

for which is assigned a zero value only for inpainting pixels.
That is,

pk ∈ Ω ⇐⇒ M(ik, jk) = 0.

A particle pk ∈ Ω is restored from the equation

Ik =
∑
j∈Nk

IjWkjVj , (5)

where the sum runs through all neighbor particles of pk,
denoted as Nk, Wkj = Wh(rkj) with rkj given by the distance
between particles pk and pj , and Vj is the area element of the
particle pj .

The k NNP spotting should be done before performing any
computation with the SPH method. Given a particle pi, since
the kNN algorithm has determinate the Ni, set of k nearest
neighbors outside Ω, the smoothing length hi is given by

hi = αmax{dij ; j ∈ Ni},

where dij is the euclidean distance between particles pi and pj ,
and α is a scaling parameter of the support radius wich avoids
that contribution of distant neighbors particles of particle pi
be almost zero. The discrete area element Vj of particle pj is
given by Vj = 1/n.

The choice of k to kNN algorithm is subjective. The tests
showed that increasing the value of k incurs the increase of
blurring in inpainted regions, which may be desirable or not,
depending on each case.

The simple formulation of the proposed technique is trans-
lated into pseudo-code below that describes the G-SPIR algo-
rithm.

Data: I: damaged image
Ω: mask
k: kNN parameter

Result: R: inpainted image
%Compute NNP for each damaged pixel pi
for each pixel pi to reconstruct do

Compute Ni with Ni ∩ Ω = ∅
end
%Start restored image: copy outside Ω pixels
R = I
%Evaluate pixel color value for each damaged pixel pi
for pi ∈ Ω do

Compute R(pi) with equation (5)
end

Algorithm 1: G-SPIR algorithm

IV. RESULTS AND COMPARISONS

Next, we present some results obtained by applying the G-
SPIR algorithm. The tests were sorted into three categories,
often mentioned in digital inpainting textbooks: text-over-
image removal, restoration of degraded images, and object-
over-image removal. The algorithm and its variations (color
images treatment) were implemented using MATLAB R© and
all tests were run using Intel R© CoreTM i3 2.13 GHz processor
with 4 GB RAM. In our results, we use the parameters k = 4
and α = 1.5 in G-SPIR algorithm.

Fig. 1 and Fig. 5 show the restorations of degraded images.
The inpainting domain Ω in Fig. 1 has 5716 pixels and the
inpainting time was 3.35 seconds. For comparison purposes,
Fig. 5 also shows the results obtained from the BSCB al-
gorithm, from Bertalmio et al [1] and Fast algorithm, from
Oliveira et al [4]. Fig. 6 shows the results obtained (G-SPIR,
BSCB and Fast) from the object-over-image removal in a
synthetic image, with the intention of evaluating the efficiency
of the algorithm in high-contrast edges connection. In Fig. 7,
(a) and (b), we see an object-removal example in a real scene,
while (c) and (d) show a text removal example. All results are
accompanied by the number of pixels in inpainting domain
(#Ω) and its inpainting times shown in figures subtitles.

V. CONCLUDING REMARKS

In this work we present a digital inpainting algorithm with a
simple formulation that combines numerical efficiency of data



(a) Original image (#Ω = 5126) (b) G-SPIR (1.53 s) (c) BSCB (450.53 s) (d) Fast (7.73 s)

Fig. 5. Restoration of degraded images.

(a) Original image (#Ω = 1153) (b) G-SPIR (4.59 s) (c) BSCB (2396.91 s) (d) Fast (9.74 s)

Fig. 6. Reconnection of high-contrast edges. Note the slight differences in reconnecting the edges on each result. G-SPIR presents a good result, but with
a slight defect in the connections. BSCB could not deal properly with the propagation direction of edges, while Fast produces a blurring in inpainted region
(without the use of diffusion barriers).

(a) Original image (#Ω = 6158) (b) G-SPIR (3.38 s) (c) Original image (#Ω = 6626). (d) G-SPIR (1.53 s)

Fig. 7. Object-over-image removal:(a) and (b); Text-over-image removal: (c) and (d).

Fig. 8. Limitation: texture is not reproduced.

in the surrounding area with the versatility of the SPH method
to assign colors in damaged pixels. The results obtained with
the G-SPIR algorithm are close, in their majority, to the
ones obtained with representative inpainting (BSCB and Fast).
In general, G-SPIR inpainting time was slightly faster than
the Fast algorithm. However, like other inpainting algorithm
previously mentioned, it was not able to transport texture to
the inpainting domain when filling a large area (Fig. 8).

For future studies we intend to analyze the viability of
other SPH operators to enhance results, the influence of the k

value (NNP amount) on the quality of inpainting, and improve
the method with the use of diffusion barriers [4] to avoid
blurring in regions where inpainting domain crosses high-
contrast edges.
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